
VIRTUALIZATION IN SYSTEMS BIOLOGY:

Metamodels and Modeling Languages for

Semantic Data Integration

Magali Roux-Rouquié and Michel Soto

UMR 7606 - CNRS - Université Pierre et Marie Curie, LIP6
8 rue du capitaine Scott, 75 015 Paris, France

{magali.roux, michel.soto}@lip6.fr

Abstract. We examined the process of virtualization to deal with data
intensive problems. Since data integration is a first-order priority in sys-
tems biology, we started developing a new method to manipulate data
models through ordinary metadata transactions, i. e. by preserving the
original data format stored in resources. After discussing why metamod-
els are made for, and the interplay of modeling languages in metamodel
design, we presented a systemic metamodel-driven strategy to integrate
semantically heterogeneous data.

1 Introduction

The process of virtualization has been defined as the mapping of an abstract
data set to a virtual space according to three majors intertwined steps consist-
ing of data selection for representing the problem space, assumptions definition
to define the final virtual space, the mapping between the starting space and the
final space through a metaphor [1]. Since that, virtualization has been extended
to the management of distributed data, the main goal in this approach being to
deal with data intensive problems [2].

The major features concern with the process of virtualization are:

– The preservation of data and knowledge in their actual format: the current
physical reality and its putative evolution are not impacted at all by the
virtualization process. This means that data and knowledge production can
go their own way without any necessary change.

– The operationability: virtualization is not just abstraction, it allows to re-
cursively transform the physical reality according to the lessons learned in
virtual reality. In these respects, virtualization aims to actualize physical
reality and, conversly, any change in physical reality has its counterpart in
virtual reality.



Virtualization may be defined more formally by sets E and V corresponding,
respectively to physical reality and virtual reality and the two functions ME and
MV :

ME : E → V, MV : V → E

The functions ME and MV define the mapping rules between E and V. V
is also named metaphor, which refers to a domain of knowledge. The choice of
metaphor is driven by both the final goal and the actual possibility to define
ME and MV .

The metaphor V can be homomorph or heteromorph. A metaphor V is ho-
momorph when the initial E paradigm is used in the V design. Conversely, a
metaphor V is heteromorph when a paradigm, different from the initial E one,
is used to design V; as an important consequence, different metaphors can be
selected to fit with different aims, according to a single physical reality.

Whatever ME and MV complexity, virtualization is a suitable process either
to face heterogeneity problems or to shift from one domain of knowledge to more
convenient representation as illustrated by the following examples.

Information technologies (IT) have been successful in using virtualization to
deal with heterogeneity problems, to increase productivity of IT tools and to
spread IT products to non IT-skilled users :

– Internet can be considered as the most famous and successful solution to
a problem, thanks to virtualization. Because of protocol heterogeneity, ex-
isting computer communication architectures were not able to interoperate
although they were built for the same purpose: exchanging data between
distant computers. This is the process of virtualization that both allowed
to integrate existing communication technologies and to preserve the future
development; this was a key feature for internet success. To overcome this
interoperability problem, a new protocol, named Internet Protocol (IP) and
a new computer address format (IP address) were designed upward from
the actual computer communication architectures; both IP and IP addresses
were virtual in the sense they were not ”natively” understood by any com-
puter communication architectures. Mechanisms from IP and IP addresses
to actual protocols and actual addresses (named respectively physical pro-
tocols and physical addresses) were designed to provide mapping. This was
achevied without putting any constraints on future technological develop-
ments. Internet is an example of how an homomorph metaphor, the proto-
col/address paradigm, is of help in the virtualization process.

– Another example concerns the desktop metaphor enabling the use of com-
puter hardware with a limited knowledge of the operating system (OS); in
this case the metaphor was heteromorph since the desktop paradigm is very



different from the computer hardware one.

– The third example concerns portability, which allows a software to be run
on any microprocessor architecture without rewriting it (even partially) but
just compiling it with the ad hoc compilator. Nevertheless, the use of compi-
lators can not mask all differences between microprocessor architectures and
there are always remaining portability problems. These increase dramatically
when the target architecture is not know in advance as it occurs on internet.
Virtualization was used to overcome this portability problem in the context
of internet. A virtual microprocessor architecture, named virtual machine (or
pseudo machine), and new high level programming language, named Java,
was designed: Java compilators traduced Java written softwares in native
instructions, named byte code, for the virtual machine and the virtual ma-
chine architecture closely mimiked actual microprocessor architectures. In
these respects, the virtual machine is an isomorph metaphor with regards to
the microprocessor architecture paradigm.

In the field of systems biology, the diversity of biological sources as well as
experimental design and methodologies results in heavy heterogeneity, not only
at the technological level but also at the semantic level; making data integration
a major issue. In parallel, another challenge aims to simulate biological systems
to predict their behavior; the ultimate goal being to understand not only their
structure but also their dynamic [3].

To approach this problem, virtualization could be of great help. As it does
not require any modification in the way of the data are produced, it preserves
all accumulated experience and skills. Only mapping rules are concerned with
the problem of data heterogeneity and further modifications in experimental
approaches. Virtualization can be achieved by developing a metamodel-driven
strategy to elicit a model upward from the current knowledge; the availability of
such a metamodel for biological systems could be used as a grid for data inte-
gration. This needs to have a clear understanding of what a metamodel is made
of, how it is designed and what it is doing for.

In these respects, metamodeling is not a final goal but an interface between
data from the physical world and models in the virtual world. The mapping be-
tween the two worlds is iterative and model transformations are the operational
side that misses single abstraction. As matter of fact, metamodeling is the junc-
tion that makes it possible to extend the database methodology to simulation
thanks to the process of virtualization.



2 Metamodel

Since data integration is a first-order priority in systems biology, metamodel-
driven strategies that are the foundation for data integration, should get much
attention.

What is a metamodel ?

The methodology to provide a generic metadata abstracting and structuring
all models into an integrated metadata repository consists into metamodeling.
This means that a metamodel provides all concepts, properties, operations and
relations between concepts necessary for designing any kind of models to be con-
tained in it, at some level of abstraction and from some perspective. In these
respects, a metamodel makes it possible to map multiple models into a single
model by coalescing those elements identified as representing the same concepts.

In a metamodel, the notion of semantics is very important and reflects not
only the need to model things in the real world (the signifier or the substance;
for example, a molecular structure), but also the meaning that these things have
to have for the purpose of the metamodel (the signified, the role in a particular
context; for example, a molecular function).

To achieve a metamodel-driven integration, it is necessary to understand the
meaning of data in all systems to be integrated: which data have the same mean-
ing, which data are complementary and how they are related. Performing such a
semantic analysis yields a metamodel for the types of data to be integrated; In
these respects, one metamodel is a models integrator; conversely, the metamodel
instances are models.

As a metamodel upward from the model layer, metamodeling deals with the
full scope of paradigm translation, enabling the use of one model described into
in one formalism to be transformed into a model in another formalism as far as
each model is obeying well-formed rules, leading to possible model transforma-
tion and coupling.

In discipline-specific metamodeling (DSM), metamodels are the way to ex-
plicit the meaning of concepts in such a specific realm and to capture the relevant
concepts. Among advantages, this approach allows to organize data without any
modification of their structures. In addition, it makes it possible to check for the
consistency of the multiple specifications as they do not conflict with one another
and must be ”in some sense” consistent. Also, it makes it easier to ensure model
validation by comparing the computerized model to the model designed by the
domain expert, for satisfactory range of accuracy.

From a technical point of view, a metamodel allows all local models and
other metadata contained in it to be added, deleted, or modified through ordi-



nary metadata transactions accounting for data and knowledge virtualization,
in contrast to a fixed global data model.

In practice, the building of a metamodel will consider four levels:

– the information level 1 or data level, which consists in the basic facts to
integrate;

– the data model at level 2, i. e. how the data are organized (for example, the
model of a database consists in a special implementation of the metamodel);

– the metamodel (level 3) that describes and organizes concepts with a set of
well-formed rules, to integrate all models from level 2;

– the language for metamodeling (metametamodeling, level 4) that use con-
cepts and the relations defined in the metamodel, and may consist in, both,
textual and/or graphic notations.

We present in figure 1, an example for a core language metamodel using a
class diagram in the object-oriented paradigm: the left part describes classes
accounting for the generic description of language elements called descriptor
elements; the right part shows classes responsible for instantiation of generic
elements and named instance elements. These two blocks are linked by binary
associations setting the connection between the generic descriptor elements and
the instance elements. They describe which elements of the instance level belong
to which element of the generic level.

Fig. 1. A core metamodel for generic description and instantiation of language ele-
ments.

The Meta Object Facility (MOF) is a well known metamodel maintained by
OMG [4]. It allows to create instances which are models, such as the Unified
Modeling Language (UML) or the Common Wharehouse Metamodel (CWM).



A four levels modelization is used to metamodel UML: the UML model is de-
fined with respect to the MOF, and the MOF is self-contained, i. e. it is used
for self-definition. We summarized these four levels of metametamodelization
(meta2modelization), which have been defined by OMG:

– the M0 level contains specific information described at level 1 and is data;

– the M1 level represents instances of the UML metamodel;

– the level M2 corresponds to the UML metamodels described with the MOF,
the UML metamodel being the language for creating UML models;

– the higher level, M3, corresponds to the MOF which is the language for de-
signing metamodels. For example, the metaclass MOFClass has an instance
which is the UMLClass; this recursive nature of the metamodel approach to
the definition of the syntax of the UML (see below for details) is elegant.

3 Modeling languages

In addition to data integration, a metamodel is especially powerful when it is
self-contained and does not require auxiliary means or external tools to specify
itself; as such, it can be used as a true language to deal with as mentioned with
the MOF which, not only allows the design of metamodels, but also allows its
own design.

What is a modeling language ?

A modeling language is a language that contains all the elements with which
a model can be described. It is a set of symbols and rules used to specify con-
cepts and constructs for any kind of system; they may be textual and/or visual,
structural and/or behavioral. Modeling languages are true languages and have
syntax (the notation) and semantics (the meaning). Syntactic issues focus purely
on the notational aspects of the language and modeling languages have to have
a rigid syntax if they have to be further compiled.

In these respects, the structure of a modeling language is the following:

– An abstract syntax defines the different ways symbols may be combined to
create well-formed models. Syntax defines the formal relations between the
elements of the language; it deals with the form and the structure of the
various expression of the language without any reference to their meaning.

– A graphical notation is the concrete syntax, the representation with well-
formedness rules. For textual languages, the concrete syntax is a set of char-
acters, the alphabet, characters are grouped into words and arranged into
sentences according to precise grammar rules.



– A syntax mapping relates abstract syntax to concrete syntax and back; for
example, the syntactic operator ”sum” is mapped to the graphical notation
”+”.

– A semantic domain defines the elements that are described by the abstract
syntax; semantics considers the meaning of syntactically correct models:
what to think, what to feel, what to do for natural language, the computer
behavior for programming language.

– A semantic mapping gives the rules that map the syntax to constraints on
things in the semantic domain, it gives the ”meaning” of the model accord-
ing to the syntax. For example, the syntactic graphical operator ”+” in a
arithmetic expression is mapped to the addition operator of arithmetic, so
that the meaning of the expression 1+2 is to be the number 3, which is the
sum of the two numbers.

With the standardization of the UML, the aim was to gather within a unique
notation the best features of object-oriented languages. The usage of UML as
a modelling language has an important impact and UML descriptions turn out
to be abstractions used to capture important properties of the systems to be
developed, notably in terms of static structure and dynamic behaviour. In these
respects, UML is a true language and as such has syntax and semantics. The
UML standard has chosen to use a metamodeling approach based on the very
popular class diagram to characterize the abstract syntax of the language; nev-
ertheless, the language is composed of an additional set of notations that may
overlap. For example, the state diagram notation can be used to express the
same information that could be express in terms of pre/post conditions on op-
erations in class diagram, but there are other aspects of states diagrams that
can not. Let us consider some examples of the semantics and syntax of the UML
according to the dynamic aspects of the language.

– Statechart: from a semantic point of view, the UML statechart represents
the behaviour of entities capable of dynamic behaviour by specifying their
responses to the receipt of event instances. Typically, it is used for describ-
ing the behaviour of classes. From a syntactic point of view, a statechart
is a graph that represents a state machine. States and various other types
of vertices (pseudostates) in the state machine are rendered by appropriate
state and pseudostate symbols, while transitions are generally rendered by
directed arcs that interconnect them. A statechart maps into a StateMa-
chine and a StateMachine is owned by a model element capable of dynamic
behaviour.

– State: in UML, a state is a condition during the life of an object or an in-
teraction during which it satisfies some condition, performs some action, or
wait for some events. A state may be simple or composite it is used to model
an ongoing activity that may be specified as a nested state machine or by



a computational expression. A state is shown as a rectangle with rounded
corners. A state may be subdivided into multiple compartments separated
from each others by a horizontal line. Notably, internal transitions compart-
ment holds a list of internal actions or activities that are performed while
the element is in the state. A state symbol maps into a State. A composite
state is decomposed into two or more concurrent substates or into mutually
exclusive disjoint subtates; and any substate of a composite state can also
be a composite state of either type. The notation of a composite state allows
showing its internal state machine structure; concurrent states are shown
by tiling the graphic region of the state using dashed lines to divide it into
substates; in contrast, disjoint states are shown by showing a nested state
diagram within the graphic region.

– Event: an event is a noteworthy occurrence; for practical purposes in states
diagrams, it is an occurrence that triggers a state transition. Events may
be of several kind. For example, the receipt of an explicit ”signal” from one
object to another results in a signal event instance; it is denoted by the sig-
nature of the event as a trigger on a transition. A signal can be declared
using the <<signal>> keyword on a class symbol in a class diagram; such
keyword is specified as <<stereotype>>.

– Transition: a transition is a relationship between two states indicating that
an object in a first state will enter the second state and perform specific
actions. It is notated as a solid line originating from the source state and
terminated by an arrow on the target state. A transition string and the tran-
sition arrow that it labels together, map into a Transition and its attachment.
A concurrent transition may have multiple sources states and target states.
It represents synchronization and/or a splitting of control into concurrent
threads. From the semantic point of view, a concurrent transition is enabled
when all the sources states are occupied. After a compound transition fires,
all the destination states are occupied. A concurrent transition includes a
short heavy bar (a synchronization bar, which can represent synchronization,
forking or both). A bar with multiple transition arrows leaving it maps into
a fork pseudostate; conversely, a bar with multiple transition arrows entering
it maps into a join pseudostate (figure 2).

These limited examples on behaviour specifications clearly point out of the
respective parts relying UML syntax and semantics and their mapping. The very
intuitive UML notation is even expressive enough to account for a large vari-
ety of situations; in these respects, UML customization can be achieved thanks
to UML profiles that specify ”standard elements” beyond those specified by
the identified subset of the UML meta-model. (OMG Document: ad/99-03-10).
Because it gathers the best features of object-oriented language, we think that
UML fits all criteria for being developed as a profile in the realm of systems biol-
ogy. This would benefit the major efforts achieved for the standardization of the
language and the fine-tuning to systems biology would be achieve through exten-



Fig. 2. States and concurrent transitions

sion capabilities. Accordingly, a limited number of well-known symbols would be
necessary for deciphering the various states of one particular entity, most of the
syntax and the semantics being defined by the language itself; in contrast, the
dialect in systems biology being refined according to domain-specific ontology,
metadata, etc.

The needs for language in Biology made of a limited number of symbol and
a simple grammar, have been emphasized recently [5].To support this require-
ment, it was noticed that more than 75.000 articles were published since 1997
about the apoptosis death-programmed process without giving a clear under-
standing of it. It was suggested that poor data integration was accounting for
such heavy difficulties. To encompass these bottlenecks, an international initia-
tive was launched to set up the Systems Biology Markup language (SBML), a
XML-based language, to facilitate data exchange and a Systems Biology Work-
bench (SBW) was developed for having heterogeneous application components
to communicate [6]. A parallel project, BioSpice was using a Model Definition
Language that was currently identical to SBML Level 2 [7]. Similarly the CellML
project is an XML-based open standard for describing and exchanging models
of cellular and subcellular processes [8]. In our hands, theses approaches mostly
focus on technological integration and deal with data exchange showing vari-
ations between formatting whereas the semantic approaches was dealing with
a limited number of topics, all necessary for building workflow models but not
expressive enough to account for the large variety of biological phenomena and
experimental approaches to depict. To fill this gap, graphical languages are be-
ing developed to achieve more detailed specifications. Cook [9] proposed a basic
lexicon of icons and arrows for describing the function of complex biological sys-
tems. This approach was rooted in the work of Khon [10] that delineated large
sets of molecular interactions maps. These initiatives and others [11, 12] have
been synthesized to propose a standard graphical notation for specifying biolog-
ical networks; introducing more structured specifications of biological systems in
terms of expressiveness, consistency, extensibility, mathematical translation and
software support [13].



Otherwise, ontologies [14] are under development to provide standardized vo-
cabulary; they concern mostly the GO consortium that provides well-structured
controlled terms on Molecular Function, Biological Process, Cellular Component

[15], as well as related projects not to mention the BioProcess ontology that dis-
tinguish logical and biochemical actions to describe biochemical pathways [16].

At last, semantic mapping is an important part of the language structure
in identifying important concepts and how these concepts fit together. This ap-
proach has been launched in molecular biology by the pioneer work of Paton [17]
that identifies core question or concept, subordinate ideas that help explain or
clarify the main concept, details, inferences and generalization that are related
to each. This approach, which expressed biological knowledge as a society of
graph, could be of great help in further topology mappings between models; for
example, by mapping concepts from a vertex set of to a single vertex or from a
path to a single edge.

4 Systemic metamodel and UML profile for systems

biology

Of invaluable interests, all these initiatives can be merged within metamodel(s)in
a virtualization perspective. Developing metamodeling approaches for systems
biology require identifying primitive concepts, properties, operations and rela-
tions between concepts necessary for the specification of biological systems in
terms of structure and behavior as well as the methodological approaches in-
volved (i. e., genomics, transcriptomics, proteomics, etc.). In a more practical
view, this can be approached through the metaphor of reactive systems to or-
ganize concepts and data in systems biology, just as the Windows makes use of
the metaphor of desktop that was more familiar to office worker.

This issue can be achieved in the framework of the systemic paradigm [18],
which allows to state that:

– a functional entity can be efficiently represented as the interface between an
internal and an external environment in which it is evolving and on which
it is acting;

– the behavior of this entity can be described as the trajectory of its states
within a Time, Space, Form frame;

– events occurring from either internal and/or external environment may allow
some changes in state variables and the consecutive firing of state transitions;

– all these changes can be modelled as the mapping between state description
and process description.



It must be mentioned that the concept of action is central for virtualization
[19], and the systemic paradigm in centered on. In these respects, viewing molec-
ular entities as processes, interacting molecules as communicating processes, the
change in interacting molecules as the change in process states, etc. [20], empha-
sizes the isomorphism between biological systems on the one hand, and reactive
systems on the other hand, making real-time extensions of the UML available
for customization to systems biology [21, 22]. This takes advantage of state di-
agrams to depict dynamic systems, which are grounded on the pioneer Harel’s
work on statecharts. This formalism was recently applied to biology by Kam et
al. for the modeling of the immune systems [23]; nevertheless, Kam’s approach
missed a reference to an explicit systemic metamodel to organize data.

As defined in section 2, a metamodel must bring all elements to define a
model; in these respects, a metamodel must acknowledge the mandatory require-
ments to integrate main data in systems biology, in terms of substances, con-
straints and processes (figure 3). In the systemic metamodel, this was achieved
as follows:

– Substances consist in biological entities, which have a persistent identity.
This must be clearly distinguished from the set of states taken by theses
entities and that refer to their history. In our model, substances referred
to any kind of biological entities, from organisms to molecules, and were
arranged into specialization (Is-a) and composition (Has-a) hierarchies. In
other words, substances were concerned with the identity (permanent) of
the entities and not their states, which are transitory. As a consequence, the
system was described with a limited number of classes (and relations) as the
entities derived from these classes have several states. Substances were speci-
fied in the main class Substance, the child class S Molecular has a specialized
class S Protein with a proteinId which stores accession numbers to database.

– The constraints (relationships) between system components constitute im-
portant aspects of living systems and most of the information we have on
constraints in pathways comes from biochemistry chemical. But such changes
are only half the story and our understanding of the functioning has to be
completed with the spatial-temporal location of molecules in the cells as
well as the properties attached to their three-dimensional behavior, i.e. all
context effects. In our model, three kinds of class accounted for such Space-
Time-Form constraints: (1)The SpaceOccurrence specified the position of
any entity with regards to its external environment, (2) the TimeOccurrence

referred to the age, time, period of any active entity (the time, the period
this entity is functioning), (3) the FormOccurrence specified the functional
isoform (if any) of the substance. The FormOccurrence was described as the
set of BioTransformation (for example, phosphorylation, acetylation, etc.)
that operated on the BioSubstance.



– Processes are represented - according to the systemic guidelines - as the
state trajectories of entities functioning over time. Understanding processes
requires the description, the modeling and the simulation of state trajec-
tories of these entities. To achieve this goal, the concept of active object
is very well adapted as active objects have their own behavior that can be
described with subsets of state machines. In our metamodel, this allows us
to delineate the elementary entity involved in process and named Functional

Unit (FUn). A FUn has internal and external environment. Internal envi-
ronment delineates the roles of FUns as infraFunctionalUnit (infraFUn): a
functional entity has components that assume specific tasks to function; this
corresponds to its internal environment; for example, the components of the
general transcription factor TFIID that consist in TBP together with 8− 12
tightly bound subunits, constitute the internal environment of TFIID and
play the role of ”infra” functional units. In addition, FUns play two kinds of
roles according to the external environment: they are FUns nesting FUns; in
our metamodel, this role is named supraFunctionalUnit (supraFUn); further-
more, in their external environment, FUns have neighbor reacting entities,
they referred to their neighborFunctionalUnit (neighborFUn); for example,
their reactiveness can be assigned according to distances and/or domain
affinity at the molecular level, or concentration at the population level. This
can be modeled as messages passing between FUns and results into state
transition, from the current state to a new state.

Fig. 3. Systemic metamodel: (a) the active upper class FUn, (b) the passive class
Substance.

Summarizing the major features of the systemic metamodel needs to un-
derscore the clear separation between structural and behavioral aspects with
respect to the functional entities (FUns) which were modeled as processes using
active objects, in contrast to substance that was modeled using passive objects.
This was achieved in a perspective to extend the database methodology to the
virtualization approaches.

Accordingly, the metamodel-driven strategy can be used to guide data in-
tegration as all concepts were being contained in it. Shortly, if we consider the



Microarray gene expression data model [24] that is detailed in the adopted speci-
fication of the OMG [formal/03-02-03], the BioSequence package, which contains
representations of a DNA, RNA or protein sequence, could be integrated into
the Substance package in the systems biology metamodel. Otherwise, limited
part of a data model could be integrated to the metamodel; for example, the
EntityLink.entity id (1,2) field of the Macromolecular Structure Specification
[OMG Formal/02-05-01) that represents the entity ids of the two entities joined
by a linkage, could be integrated at the metamodel level to specify the binding
between FUns. The same approach could be achieved with both the Bind-action-

type in the BIND database model [25] and the Action-type in [16], that can be
integrated in the metamodel to specify action occurring in a particular state
(figure 4).

Thus, a metamodel for systems biology would allow describing, in a common
way, the data found in the large variety of physical sources by clarifying the
hypotheses and the axioms that hold among concepts, as previously stressed
in reference [18] concerning relationships between Being (OMB) [14] Structural

element (EcoCyc)[26], Cellular function (GO) [15], Cellular role (YPD) [27]
Structural element (EcoCyc) [26], Processes (GO) [15] Pathways (KEGG) [27],
etc.

Because of the isomorphism between the systemic specifications of biological
systems and the reactive systems used as a metaphor to drive the virtualization
process, we consider the customization of the UML to systems biology, named
SB-UML, instead of developing a new language. In order to assess the relevance
of developing such UML extensions to systems biology (UML profile), we initi-
ated the writing of Khon’s molecular interaction maps into SB-UML. Shortly,
we found SB-UML more expressive than the referenced graphical notation as it
allows representing additional dynamic features. The figure 4 presents the com-
plexation of protein A to protein B showing concurrent behavior of protein A
and B until synchronization into complex AB is achieved. This approach em-
phasizes pattern occurrence allowing factored processes with, among important
advantages, software reusability (to be published elsewhere).

Fig. 4. Complexation is a synchronization process.



Details on the way one entity changes its respective states, take advantage of
the reactive systems metaphor. Figure 5a shows aspartate transcarbamoylase, an
instance of the the allosteric enzyme active class, containing an allosteric region
and an enzymatic region, all stereotyped as <<FUns>>. The figure 5b gives the
structure view of the enzyme that shows how the regulatory and enzymatic re-
gions communicate with their environment through specific amino-acid residues
symbolized as black squares. When the required interaction (signal) targets site-
specific amino-acids, a transition is fired from the initial state to the final state.
This corresponds to the changing from a free state to a bound state for the al-
losteric region and from an inactive state to an active state for the enzymatic one;
both processes are concurrent and theses changes occur simultaneously. When
the new states become occupied, the enzyme is allowed to perform carbamoyl
transfer (figure 5c). As shown, extending UML to systems biology allows ac-
counting for details that are no more mentioned in usual specifications because
of some limits in language expressiveness.

5 Conclusion and perspectives

In this paper, we presented the metamodel-driven strategy as a key step in the
virtualization process. As this approach requires a metaphor relevant to the fi-
nal goals in the field of systems biology, we found that biological systems could
be efficiently modeled as reactive systems within the systemic framework as
previously reported [18]. This allowed us specifying any biological entity as an

attribute vector depending of time, space and form variables,
→

v (t, s, f), and
it was achieved in the object-oriented paradigm using a systems biology exten-
sion of the UML (SB-UML). This aims to delineate a UML profile for systems
biology, taking advantage of the UML expressiveness with regards to reactive
systems.

In reactive systems, entities have their own thread of control and can behave
concurrently with steps for synchronization. This shows isomorphism to biolog-
ical entities which behave independently, although in a synchronized manner.
The reference to the systemic framework was achieved according to the design
of the attribute vector centered on the concept of form. This allowed to clearly
distinguish the structure of biological entities from their behavior, as most of
the structural data can be assigned to the substance passive class, whereas the
form attribute of the active Functional Unit (FUn) class can be referred to the
dynamic substance transformation according to time and space occurrences.

It must be strongly emphasized that a metamodel-driven strategy is not just
setting a model upward from the other models but it has a core function for
designing a new model from a former one or from the physical reality. This func-
tion is central to the process of virtualization, which realises the coupling of a
physical reality with a constructed virtual reality. This is achieved by preserv-
ing the diversity of data, without any modification at the data model level and



Fig. 5. Instantiation of the systemic metamodel: aspartate transcarbamoylase. (a) class
diagram, (b) structure diagram, (c) state diagram.



without any hypothesis on their future improvements. As matter of fact, data
evolution only impacts on the metamodel and the mapping rules between the
physical reality and the virtual reality.

Virtualization leads to operationability, in the sense of actionability, since
the virtual reality actualizes the physical reality; so that, any change in physi-
cal reality is reflected into virtual reality. In these respects, operationability is
the main difference between abstraction and virtualization: abstraction aims to
provide a general and synthetic point of view on reality, it does not provide any
way to act on the abstracted reality. Conversely, virtualization neither aims to
generalize nor to simplify: it aims to create a purpose-oriented virtual reality
with action capability. In systems biology, the major aims for virtualization deal
with heterogeneous data, data integration, analysis and simulation.

In these perspectives, our goal is to develop a method for virtualizing sys-
tems biology in any dimension of such systems i.e., data, process, experimental
methodologies, modeling, etc. Part of the method, using SB-UML, will take ad-
vantage of the many efforts for translating UML diagrams into formal models
suitable to carry out analysis on firm grounds [29]. Such transformations have
different applications which may concern model checking to verify the global
consistency, property verification at a low level of detail, simulation and pre-
diction of properties, etc. Numerous works are ongoing in the fields of systems
biology and we aim virtualization would help to integrate although preserving
these different and complementary contributions.

Acknowledgments We thank Nicolas Caritey, Laurent Gaubert and Bénédicte
Le Grand for helpful discussions.

References

[1] Spring, M. B., Jennings, M. C.: Virtual reality and abstract data: virtual-
izing information. Virtual Reality World. 1 (1) (1993), pp. c-m.

[2] Moore, R. W.: Integrating Data and Information Management. Interna-
tional Supercomputer Conference, June 22-25 (2004), Heidelberg (D).

[3] Auffray, C., Imbeau, S., Roux-Rouquié, M., Hood, L. (2003) C. R. Biolo-
gies. From functional genomics to systems biology. 326, 879-892.

[4] http://www.omg.org

[5] Franza, B. R.: From play to laws: Language in Biology. Sci STKE, pe9
(2004)

[6] Sauro, H., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J.,
Kitano,H.: Omics: A journal of integrative biology. 7 (2003) 355-372

[7] Garvey, TD., Lincoln, P., Pedersen, CJ., Martin, D., Johnson, M.: Omics:
A journal of integrative biology. 7 (2003) 411-420

[8] http://www.cellml.org/public/specification/20021106/index.html



[9] Cook, D. L., Farley, J. F., Tapscott, S. J.: A basis for a visual language for
describing, archiving and analyzing functional models of complex biological
systems Genome Biology 2(4) (2001) research0012.1-0012.10

[10] Kohn, K.W.: Molecular interaction map of the mammalian cell cycle con-
trol and DNA repair systems. Mol Biol Cell 10 (8) (1999) 2703-34. 3.

[11] Pirson, I., Fortemaison, N., jacobs, C., Dremier, S., Dumont, J., Maenhaut,
C. The visual display of regulatory information and networks. Trends Cell
Biol 10(10) (2000):404-408.

[12] Maimon, R., Browning, S.: Diagramatic Notation and Computational
Structure of Gene Networks. In: The Second International Conference on
Systems Biology (2001). Pasadena.

[13] Kitano H.: A Graphical Notation for Biological Networks BIOSILICO 1

(2003) 169-176.
[14] Schulze-Kremer, S.: Ontologies for Molecular Biology, in Proc of 3rd Pacific

Symposium on Biocomputing PSB98 (1998) 693-704.
[15] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry,

J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A.,
Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richard-
son, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool
for the unification of biology. The Gene Ontology Consortium, Nat Genet.
25 (2000) 25-29

[16] Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, SM., Krauthammer, M.,
Kaplan, SH., Kra, P., Russo, JJ., Friedman, C.: A knowledge model for
analysis and simulation of regulatory networks. Bioinformatics 16 (12)
(2000) 1120-1128

[17] Paton, RC.: Diagrammatic Representations for Modelling Biological
Knowledge. BioSystems 66 (2002) 43-53

[18] Roux-Rouquié, M., Le Moigne., JL.: The systemic paradigm and its rel-
evance for modeling biological functions. C. R. Biologies, Special Issue :
Model driven Acquisition 325 (2002) 419-430

[19] Soto., M.: Semantic approach of virtual worlds interoperability. In: Michael
Capps (ed.): Proceedings of IEEE WET-ICE ’97, Cambridge, MA, June
1997. IEEE Press.

[20] Regev, A., Shapiro, E.: Cells as computation. Nature 419 (6905) (2002)
343

[21] Roux-Rouquié, M., Renner, J., Sautejeau, G., Rosenthal-Sabroux, C.:
Modeling Systems and Processes in Molecular Biology with active objects.
In: Objects in bio- and chem-informatics (OiBCI02), OMG conference,
Washington, USA (2002)

[22] Roux-Rouquié, M., Caritey, N., Gaubert, L., Rosenthal-Sabroux, C.: Using
the Unified Modeling Language (UML) to guide systemic description of
biological processes and systems Biosystems (2004), in press.

[23] Kam, N., Irun, R., Cohen, Harel, D.: The Immune System as a Reac-
tive System: Modeling T Cell Activation With Statecharts. In: IEEE 2001
Symposia on Human Centric Computing Languages and Environments
(HCC’01) Stresa, Italy, (2001) september 05-07

[24] Spellman, Miller, PTM., Troup, C., Sarkans, U., Chevitz, S., Berhnart, D.,
Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks, WL., Goncalves,
J., Markel, S., Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hub-
ley, R., Deutsch, E., Senger, M., Aronow, BJ., Robinson, A., Bassett,



D., Stoeckert, CJ. Jr., Brazma, A.: Genome Biology 3 (9) (2002) re-
search0046.1 0046.9

[25] G D Bader and C W V Hogue. BIND-a data specification for storing and
describing biomolecular interactions, molecular complexes and pathways
(2000) Bioinformatics 16, 465-477.

[26] Karp, P.D., Riley, M., Paley, S.M., Pellegrini-Toole, A., Krummenacker,
M.: EcoCyc: Encyclopedia of E. Coli Genes and Metabolism, Nucleic Acid
Res. 27 (1999) 55-58.

[27] Hodges, P.E., McKee, A.H.Z., David, B.P., Payne, W.E., Garrels, J.I.:
The Yeast Proteome Database (YPD): a Model for the Organization and
Presentation of Genome-Wide Funtional Dat, Nucleic Acid Res, 27 (1999)
69-73.

[28] Kaneshisa, M.: A Database for Post-Genome Analysis, Trends genet. 13

(1997) 375-376.
[29] Korenblat, K., Priami, C.: Extraction of Pi-calculus specifications from

a UML sequence and state diagrams. DEGAS IST-2001-32072, technical
report (2003) #DIT-03-07.


