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ABSTRACT 

Since data integration is a first-order priority in systems 
biology, metamodeling that is the foundation for data 
integration, should become an effective strategy among current 
approaches. In practice, the building of a metamodel requires 
four levels: the information level 1 or data level, which consists 
in the basic facts to integrate, the data model at level 2, i. e. how 
the data are organized, the metamodel (level 3) that describes 
and organizes concepts with a set of well-formed rules to 
integrate models from level 2 and at level 4, the language for 
metamodeling that uses concepts and relations defined in the 
metamodel. 
Based on these principles, we developed an object-oriented 
systemic metamodel understandable by humans and computers 
that makes it possible to integrate data on structure, on the one 
hand and function, on the other hand. This metamodel was 
grounded on the active class, FunctionalUnit, whose attributes 
specify time-, space- and shape-dependency of biological 
functions. A special emphasize was put on the “shape” attribute, 
named FormOccurrence,  to account for the multifarious 
functional isoforms with respect to the gene or the protein from 
which they are derived. The context-dependency of biological 
functions was assessed through specific roles devoted to the 
FunctionalUnit class, they are vicinity 
(NeighborFunctionalUnit) for local context-dependency and 
globality (SupraFunctional Unit) for global context-
dependency.   
We used the Unified Modeling Language (UML) to design our 
metamodel and we present arguments for customizing it to 
systems biology. 
 
Keywords: metamodel, data integration, systems biology,  
UML profile. 

 1. WHAT IS A METAMODEL AND WHAT IS IT 
NEEDED FOR ? 

A metamodel is a conceptual framework made of rules and 
elements that allows specifying any kind of models, this model 
of models containing all concepts and relations present in the 
subsumed models [1]. This approach requires a sharable 
understanding of the term of “model” as various definitions 
exist according to the scientific community. In biology, a model 
is a verbal description accompanied, when possible, with a 
graphical representation; in order to introduce standardized 
elements in these practices,   a graphical language has been 
developed recently [2]. In the database community, models refer 
to data schemas on which the databases are developed [3]; the 
current paradigms for modeling data being the Entity-relation 
(ER) paradigm and Object-Oriented (OO) one.  In mathematics, 
models are analytical representations using a variety of 
formalisms, for example the ordinary differential equations 
(ODEs) or the Boolean networks, each of them being able to 
capture some special features as continuous or discrete 

properties, respectively [4]. Although very different, these 
meanings result each time from an abstraction of the real world 
through the identification of relevant elements. A model 
upwards these models that would contain all elements and rules 
organized into a coherent conceptual framework consists in a 
metamodel. Moreover, a metamodel captures the syntax and the 
semantics of models contained in it; as such, it allows defining a 
real language at the meta-meta level. For example, “classes” 
and “relations” in the object-oriented UML language are the 
language elements that are used for tailoring UML to a specific 
application domain; this tailoring is named “profiling” and 
results in a domain-specific language. 
Metamodeling is specially needed when systems to be modeled 
are so complex that they cannot be represented in a single 
model and multiple models have to be subsumed to give a 
relevant understanding of the complete systems. Otherwise, 
when different levels of abstraction are required like molecular 
and clinical in trial series, metamodeling could allow these 
models to coexist for generating new knowledge. Because 
model syntax is fitting with metamodeling, metamodeling can 
be used in model transformation, a model developed in one 
formalism being transformed into another formalism. 
Systems biology, which is an emerging field dedicated to the 
understanding of the functioning of living systems through the 
study of the complete set of their components (genome, 
transcriptome, proteome, etc.), is facing most of these 
challenging issues that metamodeling aims to decipher. The 
present work describes the design and the instantiation of a 
systemic metamodel (SMM) in systems biology. 

2. A SYSTEMIC METAMODEL IN  SYSTEMS 
BIOLOGY. 

The general scope of systemic approaches is to assess the 
functioning and the evolution of any entity considered as a 
system. As reported previously [5], the systemic principles state 
that:  
1. An entity taken as a system can be efficiently represented 

as the interface between an internal and an external 
environment in which it is evolving and on which it is 
acting, 

2. Its behavior is described as the state trajectory in a time, 
space, form frame. Events occurring from internal and/or 
external environment allow changes in state variables and 
consecutive firing of state transitions.  

From an operational point of view, the adaptation of systemic 
principles to systems biology provides a SMM framework for 
guiding the integrative annotation of genome, transcriptome, 
proteome, etc., and linking data on structure, on the one hand, to 
data on functioning, on the other hand. The SMM design was 
achieved using the object-oriented UML language that fits in 
the main systemic principles [5]. 



The structure level: data on substance 
First of all, a SMM should make it possible to identify the list of 
all biological structures as the elementary biological element, or 
“substance”, at a special level, i.e. a molecule at the molecular 
level, a cell at the cellular level, etc. The substance concept 
specifies elements which are context-independent and have 
unchanged attribute values over time; this must be clearly 
distinguished from the set of states taken by the corresponding 
entity and that refers to the entity history.  
 
In object-oriented modeling, biological substances are described 
as a is-a and has-a hierarchies. Many works have been involved 
with classification of biological concepts; the ontology in figure 
1 presents a partial hierarchical organization of biological 
substances from molecules to organisms, the prefix “S” 
indicating that the specific class is derived from the Substance 
upper class. Accordingly, a protein is-a molecular substance 
(S_Molecule) that is-a substance, a nucleus membrane is-a 
organelle substance (S_Organelle) that also is-a substance. A 
lymphocyte is-a cell substance (S_Cell) that is-a substance as 
well. Otherwise, a S_Cell (lymphocyte) has-a S_Organelle 
(nucleus membrane) that has-a S_Molecule. This hierarchy 
takes advantage of object-oriented features, inheritance, on the 
one hand, which allows an object to inherit properties from the 
object from which it is derived and modularity, on the other 
hand, that consists in breaking up complex entities into 
manageable pieces or modules. Several principles govern 
modularity, notably understandability (a module must be fully 
understandable without referring to another module) and 
composability (the elements can be combined to produce new 
systems); with this respect, the Substance hierarchy realizes a 
Substance module. 

 
Figure 1. The Substance hierarchy  (see teext for details). 
 
To illustrate the context-independent features of the Subtance 
class, some attributes of the gene taken as a substance are 
presented in Table 1: A gene substance has a unique identifier, 
with an approved gene symbol (for example, human genes) and 
some additional symbols. According to the approved gene 
symbol, the gene has a chromosomal location and a nucleotide 
sequence which are species-specific; this DNA sequence is 
coding for RNA and protein  sequences. 
 
Table 1.  Attributes of the GeneSubstance class 

Accordingly, the Substance package integrates unique invariant 
data on biological entities as unique identifier and name; this is 
a pivot package ground on gene or protein Ids that enable access 
to diverse annotation sources. The merging of transcriptome, 
proteome and metabolome data models has been realized 
recently, it integrates data from each source into a unique 
resulting SysBio-OM model [6]. In our hands, the integration of 
the SysBio-OM model into SMM should occur through the 
BioSequence package associated to the BioMaterial package 
and especially to the specialized SpotMaterial, PeakMaterial 
and ColumnfractionMaterial. Ontology-based strategy has been 
proposed for insuring semantic integration of databases [7]. We 
think that Substance ontology in SMM would provide the first 
clue to integrate the main annotation ressources. 

The function level: data on dynamics 
The SMM has to identify the list of functions of the system 
components. This is a difficult task as function is very versatile 
due to time-, space-, shape- and/or context-dependency. The 
Gene Ontology (GO) [8] has developped a controlled 
vocabulary that distinguish “molecular function” and “cellular 
process” (in addition to the “compartment” hierarchy), which is 
of unvaluable help to improve standardization in biological 
annotation; nevertheless, this approach does not allow a 
dynamic description of biological behavior in terms of inputs 
and outputs to “function” from one state to another state through 
transition firing. Integrating data on dynamics requires to deal 
explicily with context in a space-time-shape frame as biological 
functions differ accounting to the context. Think to different 
Wnt signalling outcomes in early embryo (axis specification, 
organogenesis, … ) and adult cell (bone density, cancer, …) 
Similarly, the function of some proteins differ according to the 
3D-shape (for example, the phosphorylation of the Cdc2 kinase 
on T14 and Y15 induces a conformational change that inhibits 
its enzymatic activity). We account for these dynamic features 
by introducing the concept of “functional unit” distinct from the 
concept of “substance” and that is defined according to the 
systemic guidelines; i. e. as an active component in an active 
environment in which it functions and transforms itself  [5]. 
In the object-oriented paradigm, the FunctionalUnit (FUn) class 
is an “active” class, i. e. a class , which has its own thread of 
control (designed as a “capsule” in figure 2; Rose Real-Time, 
IBM). In addition to having attributes and operations as passive 
classes, active classes have “ports” that are interfaces for 
communication; the protocol for communication being specified 
in a special “protocol” class. Figure 2 presents the SMM core 
consisting in the active FunctionalUnit class and relations.  
 
Figure 2. The FunctionalUnit active class (see text for details). 

 
1. The FUn entity is the elementary unit in a process, it can 

be tangible (a functional molecule) or intangible (a 
functional network), The prefix “FUn” is used to refer to 
classes or objects that are derived from the FUn upper 
class. 

MD_geneId: ID Accession numbers to any other database 
GeneSymbol: String Usual name 
OtherSymbol: String Other names 
ChromosomalLocation: String MD_GeneCards database Identifiers 
S_promoter: S_Promoter Gene promoter 
S_regulatoryElement:S_regulatoryElement Gene regulatory elements 
S_rna: S_RNA Encoded RNA(s) 
S_protein : S_Protein  Encoded protein(s) 
startPosition : int An integer indicating starting position; this 

position is given according to the initiation 
site. 

endPosition : int An integer indicating ending position; this 
position is given according to the initiation 
site.  
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2. FUn roles are SupraFunctionlUnit, InfraFunctionalUnit 

and NeighborFunctionalUnit: A SupraFunctionlUnit 
(SupraFUn) corresponds to the external environment or 
“global context” environment for a specific FUn (for 
example, an epithelial cell will be the external environment 
(SupraFUn) of the FUn_protein, for example, EGF 
receptor. Accordingly, a FUn may have 0 (unknown) to 1 
SupraFUn. Conversely, the internal environment would be 
assessed by InfraFunctionalUnit (InfraFUn) FUn_protein 
and FUn_DNA would behave as InfraFun according to the 
FUn_nucleus in which they are embedded. Cardinality for 
InfraFun would range from 0 to n. Composition 
relationships are linking InfraFuns to FUns to SupraFUns. 
The local environment or “local context” of FUns is made 
of NeighborFunctionalUnits (NeighborFUns) with which 
FUns have interaction relationships. Thes relations may be 
of different kinds depending of the abstraction level for 
FUns (from physical molecular complexation to abstract 
genetic relations). 

 
FUn attributes are FormOccurrence, TimeOccurrence and 
SpaceOccurrence, according to systemic principles. 
 
3. The FormOccurrence describes the special details of the 

shape involved in the actual activity of the FUn. This 
description can be a string if the FUn is a sequence, it will 
be quantitative in cells taken as FUns, and equations will 
define parts of the Euclidian space. The FormOccurrence 
is a composite attribute composed of Substance and 
Transformation (Figure 3).  

 

 
Figure 3. The FormOccurrence composite attribute (see text foe 
detains) 
 
4. The Transformation  class specifies a transformation that 

occurs to modify the form of the FUn, it has the operation 
DoTransformation() and every derived class will inherit of 
this operation although the associated method will be 
specific to each particular child class. At the molecular 
level, transformations distinguish non covalent 
transformations (Tr_NonCovalent) and covalent 
transformations (Tr_covalent transformation), the prefix 
Tr_ being used to name classes or objects derived from the 
Transformation  class. In the example presented in Figure 
3, the FormOccurrence of a phosphorylated FUn_protein 
is updated following a DoPhosphorylation() operation call, 
pAAc being the amino acid position : 

getProteinSequence(p : S_Protein) 
phosphorylates(b : ProteinSequence, pAAc : int) 

 

5. The TimeOccurrence describes the moment, the instant 
during which the FUn is acting. It is used to specify the 
age of the entity and refers to an internal clock, or it 
delineates the period of time the FUn is acting. 

 
6. The SpaceOccurrence describes the Fun’s position 

according to the external environment. The 
SpaceOccurrence refers to the formOccurrence of the 
containing FUn.  

 
7. FUn operations are:  

∗ DoDisplacement () that updates the 
spaceOccurrence attribute 

∗ DoTransformation () that updates the 
formOccurrence attribute 

∗ DoActivation () that changes the current state of the 
target 

∗ DoInhibition () that changes the current state of the 
target 

The operation calls are realized on signal entrance through 
ports. 
 
8. FUn ports are special devices of classes to manage in/out 

signals. They have attached protocols that specify that 
messages exchanged between two objects are conform to 
some interaction pattern. For example, the Phosphorylation 
protocol class will exchange messages DoPhosphorylation 
and Phosphorylated between the kinase and the target (see 
Figure 4). A sequence diagram specifies the interaction 
between objects; it shows the explicit ordering of message 
passing over time (not shown). 

 

3. INTEGRATING DATA ON STRUCTURE AND 
BEHAVIOR: THE MPF CASE STUDY. 

A case study was selected to illustrate the coupling between 
structural and behavioral data; this concerns the G2/M transition 
in cell cycle, which is triggered by the Cdc25-mediated 
activation (dephosphorylation) of the cyclinB/Cdc2 complex 
(MPF) involved in the regulation of events receding cell 
division. At the S/G2, the complex is kept in cytoplasm in an 
inactive state due to phosphorylation of T14 and Y15 on Cdc2, 
catalyzed by Wee1 and Myt1 kinase, respectively. The complex 
is further activated by phosphorylation of T160 and the 
dephosphorylation of T14 and Y15 on Cdc2. We concentrated 
on the negative regulation of MPF complex to show how 
structure and behavior data can be integrated into a unique 
model. 
The following FUns entities were created: FUn_Cdc2, 
_CyclinB, _MPF, _Myt1 and _Wee1; let consider data about 
FUn_Cdc2: 
At the structure level, S_Cdc2 has approved gene symbol 
CDC2, synonym symbol CDK1 and chromosomal location on 
10q1.1; in addition, the DNA sequence refers to NT 008583 
contig of Genbank and protein sequence has Uniprot/Swiss-Prot 
identifier: CDC2_HUMAN, P06493 
At the behavioral level, FUn_Cdc2 TimeOccurrence, 
SpaceOccurrence and FormOccurrence attributes have value: S 
and/or G2, S_cytoplasm and S_Cdc2 protein sequence, 
respectively. Its global environment is the SupraFUn: 
FUn_cytoplasm, and the aggregation relation to FUn_CyclinB 
creates FUn_MPF.  
 
Figure 4a presents FUn_Cdc2 in association with FUn_CyclinB 
to compose FUn_MPF. FUn_Cdc2 is phosphorylated by 
messages passing between FUn_Cdc2, FUn_Myt1 and 
FUn_Wee1 according to the protocol Phosphorylation. Ports on 
FUn_Cdc2 are T14 and Y15 and KinaseDomain on FUn_Myt1 
and FUn_Wee1; protocol Phosphorylation has InSignal: 
DoPhosphorylation and OutSignal: Phosphorylated.  
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Figure 4. Phosphorylation of the Cdc2_CyclinB_complex using active 
classes and protocols (a); States and state transitions of the FUn Cdc2 
(b) (see text for details). 
 
 
Figure 4b presents the FUn_Cdc2 state diagram: Cdc2 in the 
active state is phosphorylated on T14 (left), the transition firing 
was achieved as the port T14 received the message 
DoPhosphorylation wih the guard condition Myt1 True that 
updates Cdc2 FormOccurrence to T14phosphorylated sequence. 
Next, port Y15 receives the entering message 

DoPhosphorylation and transition is fired to the new state with 
FormOccurrence value: T14Y15phosphorylated sequence; the 
opposite scenario is performed on right lane.  At the exit of the 
state phosphorylatedT14phosphorylatedY15, an operation call 
DoInactivation, is firing the transition to a new inactivate state. 
 

 4. DISCUSSION  

In “The Molecular Biology Database Collection: 2005 update” 
[9], Michael Galperin identifies 719 databases, that is 171 more 
than the 2004 issue. This 30% increase illustrates how 
information is important in modern biology and the challenge it 
is facing for integrating new data and knowledge. Recently, 
Lincoln Stein reviewed integration approaches [10], and main 
strategies concern “view integration” and “Data warehousing”, 
both of which have been temptatively developed and failed to 
be adopted by the community because of the difficulty of 
maintaining these tools when too many changes are occurring in 
data models. With this respect, the author advocates 
sociological problems instead of technical problems, as data 
providers would need to wonder about how their data will be 
used. In our opinion, problems are not only technological and/or 
sociological but also biological: what do we need to know? In 
what context? What do we need not to know? Etc. Stein 
proposed a new approach to answer these questions that he 
named “the knuckles-and-nodes approach” and that consists in 
facing a specific biological problem, for example “orthology” or   
“citation” and having data and knowledge curated by scientific 
groups to insure links with relevant databases. Unless such 
organization is achieved, these efforts would need to be 
integrated in a larger biological framework as systems biology 
aims to realize. Such a framework approach is under 
development at the CCPN project [11, 12], which consists in 
several packages, for example, the NMR package depending on 
the Molecule package that contains descriptions of sequence 
and covalent geometry. 
In the present paper, this framework approach was extended to 
metamodeling with the design of a systemic metamodel that 
allows coupling and integrating data on structure and behavior.  
This was performed by taking advantage of UML elements 
(class diagrams, sequence diagrams, state diagrams, active and 
passive classes, etc) to achieve models understandable by 
humans and computers. With respect to the CCPN descriptions 
of sequence and covalent geometry, these data can be integrated 
in our Substance and Transformation hierarchies, respectively; 
in addition, the behavior of the corresponding functional 
molecules can be described in our systemic metamodel using 
state diagrams; for example, dynamic descriptions of protein 
folding or docking would make it possible to further simulate 
molecular space-time evolution, then to couple data to 
simulation.  
One of the goals of the metamodel described above is to take 
into account all biological factors –static as well as dynamic -, 
at various scales. The next step is to instantiate this metamodel 
to perform “in silico” experimentations. As this is the case with 
traditionnal types of experimentations, the results will need to 
be analyzed in order to interpret them and ultimately predict the 
evolution of the system. The volume and multidimensionnality 
of the generated data will require the use of knowledge 
extraction techniques such as factor- or conceptual-analysis.  
Modeling complex systems, such as biological components, is 
an error prone process. The validity of the model is thus a 
central question particulary when this model is used for building 
in silico experimentations. Mainly two reasons can lead to an 
invalid model : input data or parameters and the model itself.  In 
the later case, using state machines facilitate the necessary 
model checking. Indeed, most model checking tools have their 
own formal language for defining models, but most of them are 
variant state machine. Modeling is also a highly time 
consuming process. Model reusability is thus a strategic 
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property to reduce cost and time in building new models. Using 
an object-oriented systemic metamodel increases reusability 
property of instanciated models but the use of modeling 
language base on state machine allows to partialy automate the 
adaptation of models to be reused or coupled. 
We selected UML because it is widely used for modeling and 
has special procedures for automatic translation to XML. In 
addition, UML Real-Time (UML-RT) extensions have a object-
constraint language (OCL) allowing semi-formal descriptions of 
states and state transitions as presented. The use of UML for 
specifying biological systems would allow tailoring it to 
systems biology as previously suggested [13]. This would 
greatly benefit the method developped recently to reverse 
engeneered biological models intoobject-oriented software 
systems [14]. 
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