
METAMODEL AND MODELING LANGUAGE: TOWARDS AN UNIFIED MODELING
LANGUAGE (UML) PROFILE FOR SYSTEMS BIOLOGY

M. ROUX-ROUQUIÉ∗, N. CARITEY, L. GAUBERT, B. LE GRAND, M. SOTO

LIP6 CNRS-UPMC 8 rue du Capitaine Scott, 75015 Paris, France

∗to whom correspondence should be addressed : magali.roux@lip6.fr
Tel (+33) 144 277 094 / Fax (+33) 144 277 495

ABSTRACT

Since data integration is a first-order priority in systems
biology, metamodeling that is the foundation for data
integration, should become an effective strategy among current
approaches. In practice, the building of a metamodel requires
four levels: the information level 1 or data level, which consists
in the basic facts to integrate, the data model at level 2, i. e. how
the data are organized, the metamodel (level 3) that describes
and organizes concepts with a set of well-formed rules to
integrate models from level 2 and at level 4, the language for
metamodeling that uses concepts and relations defined in the
metamodel.
Based on these principles, we developed an object-oriented
systemic metamodel understandable by humans and computers
that makes it possible to integrate data on structure, on the one
hand and function, on the other hand. This metamodel was
grounded on the active class, FunctionalUnit, whose attributes
specify time-, space- and shape-dependency of biological
functions. A special emphasize was put on the “shape” attribute,
named FormOccurrence, to account for the multifarious
functional isoforms with respect to the gene or the protein from
which they are derived. The context-dependency of biological
functions was assessed through specific roles devoted to the
FunctionalUnit class, they are vicinity
(NeighborFunctionalUnit) for local context-dependency and
globality (SupraFunctional Unit) for global context-
dependency.
We used the Unified Modeling Language (UML) to design our
metamodel and we present arguments for customizing it to
systems biology.

Keywords: metamodel, data integration, systems biology,
UML profile.

 1. WHAT IS A METAMODEL AND WHAT IS IT
NEEDED FOR ?

A metamodel is a conceptual framework made of rules and
elements that allows specifying any kind of models, this model
of models containing all concepts and relations present in the
subsumed models [1]. This approach requires a sharable
understanding of the term of “model” as various definitions
exist according to the scientific community. In biology, a model
is a verbal description accompanied, when possible, with a
graphical representation; in order to introduce standardized
elements in these practices, a graphical language has been
developed recently [2]. In the database community, models refer
to data schemas on which the databases are developed [3]; the
current paradigms for modeling data being the Entity-relation
(ER) paradigm and Object-Oriented (OO) one. In mathematics,
models are analytical representations using a variety of
formalisms, for example the ordinary differential equations
(ODEs) or the Boolean networks, each of them being able to
capture some special features as continuous or discrete

properties, respectively [4]. Although very different, these
meanings result each time from an abstraction of the real world
through the identification of relevant elements. A model
upwards these models that would contain all elements and rules
organized into a coherent conceptual framework consists in a
metamodel. Moreover, a metamodel captures the syntax and the
semantics of models contained in it; as such, it allows defining a
real language at the meta-meta level. For example, “classes”
and “relations” in the object-oriented UML language are the
language elements that are used for tailoring UML to a specific
application domain; this tailoring is named “profiling” and
results in a domain-specific language.
Metamodeling is specially needed when systems to be modeled
are so complex that they cannot be represented in a single
model and multiple models have to be subsumed to give a
relevant understanding of the complete systems. Otherwise,
when different levels of abstraction are required like molecular
and clinical in trial series, metamodeling could allow these
models to coexist for generating new knowledge. Because
model syntax is fitting with metamodeling, metamodeling can
be used in model transformation, a model developed in one
formalism being transformed into another formalism.
Systems biology, which is an emerging field dedicated to the
understanding of the functioning of living systems through the
study of the complete set of their components (genome,
transcriptome, proteome, etc.), is facing most of these
challenging issues that metamodeling aims to decipher. The
present work describes the design and the instantiation of a
systemic metamodel (SMM) in systems biology.

2. A SYSTEMIC METAMODEL IN SYSTEMS
BIOLOGY.

The general scope of systemic approaches is to assess the
functioning and the evolution of any entity considered as a
system. As reported previously [5], the systemic principles state
that:
1. An entity taken as a system can be efficiently represented

as the interface between an internal and an external
environment in which it is evolving and on which it is
acting,

2. Its behavior is described as the state trajectory in a time,
space, form frame. Events occurring from internal and/or
external environment allow changes in state variables and
consecutive firing of state transitions.

From an operational point of view, the adaptation of systemic
principles to systems biology provides a SMM framework for
guiding the integrative annotation of genome, transcriptome,
proteome, etc., and linking data on structure, on the one hand, to
data on functioning, on the other hand. The SMM design was
achieved using the object-oriented UML language that fits in
the main systemic principles [5].

The structure level: data on substance
First of all, a SMM should make it possible to identify the list of
all biological structures as the elementary biological element, or
“substance”, at a special level, i.e. a molecule at the molecular
level, a cell at the cellular level, etc. The substance concept
specifies elements which are context-independent and have
unchanged attribute values over time; this must be clearly
distinguished from the set of states taken by the corresponding
entity and that refers to the entity history.

In object-oriented modeling, biological substances are described
as a is-a and has-a hierarchies. Many works have been involved
with classification of biological concepts; the ontology in figure
1 presents a partial hierarchical organization of biological
substances from molecules to organisms, the prefix “S”
indicating that the specific class is derived from the Substance
upper class. Accordingly, a protein is-a molecular substance
(S_Molecule) that is-a substance, a nucleus membrane is-a
organelle substance (S_Organelle) that also is-a substance. A
lymphocyte is-a cell substance (S_Cell) that is-a substance as
well. Otherwise, a S_Cell (lymphocyte) has-a S_Organelle
(nucleus membrane) that has-a S_Molecule. This hierarchy
takes advantage of object-oriented features, inheritance, on the
one hand, which allows an object to inherit properties from the
object from which it is derived and modularity, on the other
hand, that consists in breaking up complex entities into
manageable pieces or modules. Several principles govern
modularity, notably understandability (a module must be fully
understandable without referring to another module) and
composability (the elements can be combined to produce new
systems); with this respect, the Substance hierarchy realizes a
Substance module.

Figure 1. The Substance hierarchy (see teext for details).

To illustrate the context-independent features of the Subtance
class, some attributes of the gene taken as a substance are
presented in Table 1: A gene substance has a unique identifier,
with an approved gene symbol (for example, human genes) and
some additional symbols. According to the approved gene
symbol, the gene has a chromosomal location and a nucleotide
sequence which are species-specific; this DNA sequence is
coding for RNA and protein sequences.

Table 1. Attributes of the GeneSubstance class

Accordingly, the Substance package integrates unique invariant
data on biological entities as unique identifier and name; this is
a pivot package ground on gene or protein Ids that enable access
to diverse annotation sources. The merging of transcriptome,
proteome and metabolome data models has been realized
recently, it integrates data from each source into a unique
resulting SysBio-OM model [6]. In our hands, the integration of
the SysBio-OM model into SMM should occur through the
BioSequence package associated to the BioMaterial package
and especially to the specialized SpotMaterial, PeakMaterial
and ColumnfractionMaterial. Ontology-based strategy has been
proposed for insuring semantic integration of databases [7]. We
think that Substance ontology in SMM would provide the first
clue to integrate the main annotation ressources.

The function level: data on dynamics
The SMM has to identify the list of functions of the system
components. This is a difficult task as function is very versatile
due to time-, space-, shape- and/or context-dependency. The
Gene Ontology (GO) [8] has developped a controlled
vocabulary that distinguish “molecular function” and “cellular
process” (in addition to the “compartment” hierarchy), which is
of unvaluable help to improve standardization in biological
annotation; nevertheless, this approach does not allow a
dynamic description of biological behavior in terms of inputs
and outputs to “function” from one state to another state through
transition firing. Integrating data on dynamics requires to deal
explicily with context in a space-time-shape frame as biological
functions differ accounting to the context. Think to different
Wnt signalling outcomes in early embryo (axis specification,
organogenesis, …) and adult cell (bone density, cancer, …)
Similarly, the function of some proteins differ according to the
3D-shape (for example, the phosphorylation of the Cdc2 kinase
on T14 and Y15 induces a conformational change that inhibits
its enzymatic activity). We account for these dynamic features
by introducing the concept of “functional unit” distinct from the
concept of “substance” and that is defined according to the
systemic guidelines; i. e. as an active component in an active
environment in which it functions and transforms itself [5].
In the object-oriented paradigm, the FunctionalUnit (FUn) class
is an “active” class, i. e. a class , which has its own thread of
control (designed as a “capsule” in figure 2; Rose Real-Time,
IBM). In addition to having attributes and operations as passive
classes, active classes have “ports” that are interfaces for
communication; the protocol for communication being specified
in a special “protocol” class. Figure 2 presents the SMM core
consisting in the active FunctionalUnit class and relations.

Figure 2. The FunctionalUnit active class (see text for details).

1. The FUn entity is the elementary unit in a process, it can

be tangible (a functional molecule) or intangible (a
functional network), The prefix “FUn” is used to refer to
classes or objects that are derived from the FUn upper
class.

MD_geneId: ID Accession numbers to any other database
GeneSymbol: String Usual name
OtherSymbol: String Other names
ChromosomalLocation: String MD_GeneCards database Identifiers
S_promoter: S_Promoter Gene promoter
S_regulatoryElement:S_regulatoryElement Gene regulatory elements
S_rna: S_RNA Encoded RNA(s)
S_protein : S_Protein Encoded protein(s)
startPosition : int An integer indicating starting position; this

position is given according to the initiation
site.

endPosition : int An integer indicating ending position; this
position is given according to the initiation
site.

…

neighborFunctionalUnit

supraFunctionalUnitinfraFunctionalUnit
composition

0.. 1*

interaction

*

FunctionalU nit

Form O ccurrence
Tim eO ccurrence
SpaceO ccurrence

D oActivation()
D oR epression()
D oTransform ation()
D oD isplacem ent()
D oCom plexation()

+ / Port : Protocol

<<C apsule::FU n>>

S _D N A E lem ent S _P rotein

ProteinSequence

S _G ene

S _ M em brane

S _N ucleusM em brane

S _Lym phocyte

S _E nzym eS _C T L

S ubstance

S _C ell S _O rganelles S _M olecule

2. FUn roles are SupraFunctionlUnit, InfraFunctionalUnit

and NeighborFunctionalUnit: A SupraFunctionlUnit
(SupraFUn) corresponds to the external environment or
“global context” environment for a specific FUn (for
example, an epithelial cell will be the external environment
(SupraFUn) of the FUn_protein, for example, EGF
receptor. Accordingly, a FUn may have 0 (unknown) to 1
SupraFUn. Conversely, the internal environment would be
assessed by InfraFunctionalUnit (InfraFUn) FUn_protein
and FUn_DNA would behave as InfraFun according to the
FUn_nucleus in which they are embedded. Cardinality for
InfraFun would range from 0 to n. Composition
relationships are linking InfraFuns to FUns to SupraFUns.
The local environment or “local context” of FUns is made
of NeighborFunctionalUnits (NeighborFUns) with which
FUns have interaction relationships. Thes relations may be
of different kinds depending of the abstraction level for
FUns (from physical molecular complexation to abstract
genetic relations).

FUn attributes are FormOccurrence, TimeOccurrence and
SpaceOccurrence, according to systemic principles.

3. The FormOccurrence describes the special details of the

shape involved in the actual activity of the FUn. This
description can be a string if the FUn is a sequence, it will
be quantitative in cells taken as FUns, and equations will
define parts of the Euclidian space. The FormOccurrence
is a composite attribute composed of Substance and
Transformation (Figure 3).

Figure 3. The FormOccurrence composite attribute (see text foe
detains)

4. The Transformation class specifies a transformation that

occurs to modify the form of the FUn, it has the operation
DoTransformation() and every derived class will inherit of
this operation although the associated method will be
specific to each particular child class. At the molecular
level, transformations distinguish non covalent
transformations (Tr_NonCovalent) and covalent
transformations (Tr_covalent transformation), the prefix
Tr_ being used to name classes or objects derived from the
Transformation class. In the example presented in Figure
3, the FormOccurrence of a phosphorylated FUn_protein
is updated following a DoPhosphorylation() operation call,
pAAc being the amino acid position :

getProteinSequence(p : S_Protein)
phosphorylates(b : ProteinSequence, pAAc : int)

5. The TimeOccurrence describes the moment, the instant
during which the FUn is acting. It is used to specify the
age of the entity and refers to an internal clock, or it
delineates the period of time the FUn is acting.

6. The SpaceOccurrence describes the Fun’s position

according to the external environment. The
SpaceOccurrence refers to the formOccurrence of the
containing FUn.

7. FUn operations are:

∗ DoDisplacement () that updates the
spaceOccurrence attribute

∗ DoTransformation () that updates the
formOccurrence attribute

∗ DoActivation () that changes the current state of the
target

∗ DoInhibition () that changes the current state of the
target

The operation calls are realized on signal entrance through
ports.

8. FUn ports are special devices of classes to manage in/out

signals. They have attached protocols that specify that
messages exchanged between two objects are conform to
some interaction pattern. For example, the Phosphorylation
protocol class will exchange messages DoPhosphorylation
and Phosphorylated between the kinase and the target (see
Figure 4). A sequence diagram specifies the interaction
between objects; it shows the explicit ordering of message
passing over time (not shown).

3. INTEGRATING DATA ON STRUCTURE AND
BEHAVIOR: THE MPF CASE STUDY.

A case study was selected to illustrate the coupling between
structural and behavioral data; this concerns the G2/M transition
in cell cycle, which is triggered by the Cdc25-mediated
activation (dephosphorylation) of the cyclinB/Cdc2 complex
(MPF) involved in the regulation of events receding cell
division. At the S/G2, the complex is kept in cytoplasm in an
inactive state due to phosphorylation of T14 and Y15 on Cdc2,
catalyzed by Wee1 and Myt1 kinase, respectively. The complex
is further activated by phosphorylation of T160 and the
dephosphorylation of T14 and Y15 on Cdc2. We concentrated
on the negative regulation of MPF complex to show how
structure and behavior data can be integrated into a unique
model.
The following FUns entities were created: FUn_Cdc2,
_CyclinB, _MPF, _Myt1 and _Wee1; let consider data about
FUn_Cdc2:
At the structure level, S_Cdc2 has approved gene symbol
CDC2, synonym symbol CDK1 and chromosomal location on
10q1.1; in addition, the DNA sequence refers to NT 008583
contig of Genbank and protein sequence has Uniprot/Swiss-Prot
identifier: CDC2_HUMAN, P06493
At the behavioral level, FUn_Cdc2 TimeOccurrence,
SpaceOccurrence and FormOccurrence attributes have value: S
and/or G2, S_cytoplasm and S_Cdc2 protein sequence,
respectively. Its global environment is the SupraFUn:
FUn_cytoplasm, and the aggregation relation to FUn_CyclinB
creates FUn_MPF.

Figure 4a presents FUn_Cdc2 in association with FUn_CyclinB
to compose FUn_MPF. FUn_Cdc2 is phosphorylated by
messages passing between FUn_Cdc2, FUn_Myt1 and
FUn_Wee1 according to the protocol Phosphorylation. Ports on
FUn_Cdc2 are T14 and Y15 and KinaseDomain on FUn_Myt1
and FUn_Wee1; protocol Phosphorylation has InSignal:
DoPhosphorylation and OutSignal: Phosphorylated.

T r_ C o v ale n t

T r_ p h o sp h o rya tio n

D oP hosphorylation()

S _ M o le c u le

S _ P ro te in

P roteinS equence

S u b sta n c e

F o rm O c c u rre n c e

T ra n sfo rm a tio n

Figure 4. Phosphorylation of the Cdc2_CyclinB_complex using active
classes and protocols (a); States and state transitions of the FUn Cdc2
(b) (see text for details).

Figure 4b presents the FUn_Cdc2 state diagram: Cdc2 in the
active state is phosphorylated on T14 (left), the transition firing
was achieved as the port T14 received the message
DoPhosphorylation wih the guard condition Myt1 True that
updates Cdc2 FormOccurrence to T14phosphorylated sequence.
Next, port Y15 receives the entering message

DoPhosphorylation and transition is fired to the new state with
FormOccurrence value: T14Y15phosphorylated sequence; the
opposite scenario is performed on right lane. At the exit of the
state phosphorylatedT14phosphorylatedY15, an operation call
DoInactivation, is firing the transition to a new inactivate state.

 4. DISCUSSION

In “The Molecular Biology Database Collection: 2005 update”
[9], Michael Galperin identifies 719 databases, that is 171 more
than the 2004 issue. This 30% increase illustrates how
information is important in modern biology and the challenge it
is facing for integrating new data and knowledge. Recently,
Lincoln Stein reviewed integration approaches [10], and main
strategies concern “view integration” and “Data warehousing”,
both of which have been temptatively developed and failed to
be adopted by the community because of the difficulty of
maintaining these tools when too many changes are occurring in
data models. With this respect, the author advocates
sociological problems instead of technical problems, as data
providers would need to wonder about how their data will be
used. In our opinion, problems are not only technological and/or
sociological but also biological: what do we need to know? In
what context? What do we need not to know? Etc. Stein
proposed a new approach to answer these questions that he
named “the knuckles-and-nodes approach” and that consists in
facing a specific biological problem, for example “orthology” or
“citation” and having data and knowledge curated by scientific
groups to insure links with relevant databases. Unless such
organization is achieved, these efforts would need to be
integrated in a larger biological framework as systems biology
aims to realize. Such a framework approach is under
development at the CCPN project [11, 12], which consists in
several packages, for example, the NMR package depending on
the Molecule package that contains descriptions of sequence
and covalent geometry.
In the present paper, this framework approach was extended to
metamodeling with the design of a systemic metamodel that
allows coupling and integrating data on structure and behavior.
This was performed by taking advantage of UML elements
(class diagrams, sequence diagrams, state diagrams, active and
passive classes, etc) to achieve models understandable by
humans and computers. With respect to the CCPN descriptions
of sequence and covalent geometry, these data can be integrated
in our Substance and Transformation hierarchies, respectively;
in addition, the behavior of the corresponding functional
molecules can be described in our systemic metamodel using
state diagrams; for example, dynamic descriptions of protein
folding or docking would make it possible to further simulate
molecular space-time evolution, then to couple data to
simulation.
One of the goals of the metamodel described above is to take
into account all biological factors –static as well as dynamic -,
at various scales. The next step is to instantiate this metamodel
to perform “in silico” experimentations. As this is the case with
traditionnal types of experimentations, the results will need to
be analyzed in order to interpret them and ultimately predict the
evolution of the system. The volume and multidimensionnality
of the generated data will require the use of knowledge
extraction techniques such as factor- or conceptual-analysis.
Modeling complex systems, such as biological components, is
an error prone process. The validity of the model is thus a
central question particulary when this model is used for building
in silico experimentations. Mainly two reasons can lead to an
invalid model : input data or parameters and the model itself. In
the later case, using state machines facilitate the necessary
model checking. Indeed, most model checking tools have their
own formal language for defining models, but most of them are
variant state machine. Modeling is also a highly time
consuming process. Model reusability is thus a strategic

C dc2

Form O ccurrence
Tim eO ccurrence
SpaceO ccurrence

D oTransform ation()
D oR epression()

+ / Y15 : Phosphorylation
+ / T14 : Phosphorylation

<<C apsule::FU n>>

P hosphorylation

D oPhosphorylation (void)

Phosphorylated (void)

<<P rotocol>>

W ee1

+ / kinaseD om ain : Phosphorylation~

<<C apsule::FU n>>
M yt1

+ / kinaseD om ain : Phosphorylation~

<<C apsule::FU n>>

P hosphorylation

D oPhosphorylation (void)

Phosphorylated (void)

<<P rotocol>>

M P F
<<C apsule::FU n>>

C yclinB
<<C apsule::FU n>>

C dc2_active

phosphorylated_T 14 phosphorylated_Y 15

C dc 2_ina ctive

phosph orylatedT 14_phosp horylatedY 15

Initial

phosphorylationT 14 phosphorylationY 15

phosphorylationY 15 phosphorylatio nT 14

Inactivation

Initial

phosphorylationT 14 phosphorylationY 15

phosphorylationY 15 phosphorylatio nT 14

Inactivation

a

b

property to reduce cost and time in building new models. Using
an object-oriented systemic metamodel increases reusability
property of instanciated models but the use of modeling
language base on state machine allows to partialy automate the
adaptation of models to be reused or coupled.
We selected UML because it is widely used for modeling and
has special procedures for automatic translation to XML. In
addition, UML Real-Time (UML-RT) extensions have a object-
constraint language (OCL) allowing semi-formal descriptions of
states and state transitions as presented. The use of UML for
specifying biological systems would allow tailoring it to
systems biology as previously suggested [13]. This would
greatly benefit the method developped recently to reverse
engeneered biological models intoobject-oriented software
systems [14].

References

[1] M. Roux-Rouquié, M. Soto, “Virtualization in systems

biology : Metamodel and modeling language for semantic
data integration”, Transactions in Computational
Systems Biology, 2005, in press.

[2] H. Kitano, “A Graphical Notation for Biological

Networks”, Biosilico, Vol. 1, 2003, pp. 169-176.

[3] U. Wittig, A. De Beuckelae, “Analysis and comparison of

metabolic pathway databases”, Briefings in
Bioinformatics, Vol. 2, 2001, pp. 126_142.

[4] H. De Jong, “Modeling and simulation of genetic

regulatory systems: a literature review” J. Comput. Biol.,
Vol. 9, 2002, pp. 69–105.

[5] M. Roux-Rouquié, J-L. Le Moigne, “The systemic

paradigm and its relevance to the modelling of biological
functions”, C. R. Biol., Vol. 325, No 4, 2002, pp. 419-430.

[6] S. Xirasagar, S. Gustafson, B. A. Merrick, K. B. Tomer, S.

Stasiewicz, D. D. Chan, Kenneth J. Yost, J. R. Yates, S.
Sumner, N. Xiao, M. D. Waters, “CEBS object model for
systems biology data, SysBio-OM”, Bioinformatics, Vol.
20, 2004, pp. 2004-2015.

[7] J. Köhler, S. Philipp, M. Lange, “SEMEDA: ontology

based semantic integration of biological ressources”
Bionformatics, Vol. 19, 2003, pp. 2420-2427.

[8] M. A. Harris, J . Clark, A. Ireland, J. Lomax, M.

Ashburner, R. Foulger, K. Eilbeck, S. Lewis, B. Marshall,
C. Mungall, J .Richter, G. M. Rubin, J. A. Blake, C . Bult,
M . Dolan, H . Drabkin, J. T. Eppig, D. P. Hill, L. Ni, M .
Ringwald, R. Balakrishnan, J. M. Cherry, K. R. Christie,
M. C. Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E.
Hirschman, E. L. Hong, R. S. Nash, A. Sethuraman, C. L.
Theesfeld, D. Botstein, K. Dolinski, B. Feierbach, T.
Berardini, S. Mundodi, S. Y. Rhee, R. Apweiler, D. Barrell,
E. Camon, E. Dimmer, V. Lee, R. Chisholm, P. Gaudet, W.
Kibbe, R. Kishore, E. M. Schwarz, P. Sternberg, M.
Gwinn, L. Hannick, J. Wortman, M. Berriman, V. Wood,
N. de la Cruz, P. Tonellato, P. Jaiswal, T. Seigfried, R.
White, Gene Ontology Consortium, “The Gene Ontology
(GO) database and informatics resource”, Nucleic Acids
Res., Vol. 32 Database issue, 2004, pp. D258-61.

[9] M. Y. Galperin, “The Molecular Biology Database

Collection: 2005 update”, Nucleic Acids Res., Vol. 33
Database Issue, 2005, pp. D5-24.

[10] M. Stein, D. Lincoln, “Integrating biological databases”,
Nature Genetics 4, 2003, pp.337-345.

[11] R. H. Fogh, W . Boucher, W. F. Vranken, A. Pajon, T. J.

Stevens, T.N. Bhat, J. Westbrook, J. M. Ionides, E. D.
Laue, “A framework for scientific data modeling and
automated software development”, Bioinformatics, 2004
Dec 21.

[12] A. Pajon, J. Ionides, J. Diprose, J. Fillon, R. Fogh, A. W.

Ashton, H. Berman, W. Boucher, M. Cygler, E. Deleury, R.
Esnouf, J. Janin, R. Kim, I. Krimm, C. L. Lawson, E.
Oeuillet, A. Poupon, S. Raymond, T. Stevens, H. van
Tilbeurgh, J. Westbrook, P. Wood, E. Ulrich, W. Vranken,
L. Xueli, E. Laue, D. I. Stuart, K. Henrick, “Design of a
data model for developing laboratory information
management and analysis systems for protein production “,
Proteins, Vol. 58 No 2, 2005, pp. 278-84.

[13] M. Roux-Rouquie, N. Caritey, L. Gaubert, C. Rosenthal-

Sabroux, “Using the Unified Modelling Language (UML)
to guide the systemic description of biological processes
and systems”, Biosystems, Vol. 75, 2004, pp. 3-14.

[14] D Shegogue, W. J. Zheng, “Object-oriented biological

system integration: a SARS coronavirus example”,
Bioinformatics, 2005, Feb 24.

